Sophomore and Junior Assignments - Becker

Graphing Rational Functions

- What is a rational function?
 - A rational function is a function expressed as a ratio, or fraction.
 - For example; if we are given \(xy = 3 \) we can rearrange it to equal \(y = \frac{3}{x} \) by dividing the variable \(x \) on both sides. This is called inverse variation since we inverted the equation with the manipulation. We can graph this inverse variation. It will not create a straight line when you have a variable in the denominator. It creates a fraction that changes as you change the value of \(x \), if you plotted each value of \(x \) and the fraction it creates, it would create a curved line when you connect the dots.

 - \((1, 3); (2, \frac{3}{2}); (3, 1); (4, \frac{3}{4}); (5, \frac{3}{5}); (6, \frac{1}{2}); (7, \frac{3}{7}); (8, \frac{3}{8}); (9, \frac{1}{3})\)
 - Note the \(y \) coordinate; as you plug in larger values of \(x \) in the denominator the number gets smaller. All fractions are reduced.
 - The same would be true for all negative value of \(x \) also
 - With both positive and negative values being graphed, the graph is:

 \[
y = \frac{3}{x}
 \]

 - Remember: it is NOT possible to divide by the number 0 in ANY fraction. So wherever the denominator equals 0, we have what is called an asymptote. An asymptote is a vertical line through the graph at the value where the denominator equals zero, in this case that line is at \(x = 0 \)

 - In the example above; \(y = \frac{3}{x} \); if we take the denominator and set it equal to zero and solve the equation, we will find the \(x \) coordinate value of where the graph will have a vertical line. You can see in this example there is a line down the middle of the graph that both sides approach, but never touch

 - If we look at a different example; \(y = \frac{1}{x-2} \) and solve where the denominator equals zero: \(x - 2 = 0; x - 2 + 2 = 0 + 2 \) becomes \(x = 2 \). That means there will be a vertical line at the value of \(x = 2 \). The graph is shown below. Notice the vertical line at \(x = 2 \) and that the line approaches but never touches that value. You could create a table of \(x \) and \(y \) values to find each specific coordinate if you were asked by evaluating the expression.

 - The negative in the denominator causes a shift in the asymptote, with the asymptote at the value of \(x = 2 \). The horizontal asymptote is represented by \(y = 0 \)
Identify the asymptotes of each equation by solving where the denominator of each function equals zero.

1. \(f(x) = \frac{2}{x} \)
2. \(y = \frac{1}{x+2} \)

3. \(h(x) = \frac{3}{2x-4} \)

Identify the asymptotes of each graph on both \(x \) and \(y \) axis. For the vertical asymptote, write \(x = \) your answer. For the horizontal asymptote, write \(y = \) you answer. Remember, a horizontal line is graphed \(y = a \) while a vertical line is graphed \(x = a \), where \(a \) is the value where the line is.
Simplifying rational expressions

- What is a rational expression? A rational expression is an expression of two polynomials in a ratio, or a fraction. For example; \(\frac{6x+12}{x+2} \) is a rational expression. Both numerator and denominator are polynomials.
- However, all this tells us is we have a vertical asymptote at the value of \(x = -2 \) if we were asked to graph. We want to simplify it down if possible. If we factor a 6 out of the numerator the equation becomes
 \[\frac{6(x+2)}{x+2} \]
 now we have the number of \(x+2 \) in both numerator and denominator that we can cancel
 \[\frac{6(x+2)}{x+2} = \frac{6}{1} = 6 \]
- The same rule applies if there is a quadratic in the numerator or denominator. We must first factor the quadratic then find numbers that cancel out in order to simplify.
 \[\frac{2x-12}{x^2-7x+6} \]
 here we must first factor both top and bottom, then simplify.

*FOR A REVIEW ON FACTORING, ASK FOR ADDITIONAL LESSON

\[
\frac{2x-12}{x^2-7x+6} = \frac{2(x-6)}{(x-6)(x-1)} = \frac{2(\text{factors})}{\text{factors} \times (x-1)} = \frac{2}{x-1}
\]

Simplify each rational expression:
Adding/Subtracting Rational expressions

In order to add any fraction, we must have a common denominator. If the denominators are the same, we can add our fraction straight across. This is also true of a fraction with a variable in the denominator.

\[
\frac{5}{2m} + \frac{4}{2m} = \frac{9}{2m}
\]

\[
\frac{3n + 4}{2n^2 + 5n - 3} - \frac{2n + 1}{2n^2 + 5n - 3} = \frac{3n + 4 - (2n + 1)}{2n^2 + 5n - 3} = \frac{3n + 4 - 2n - 1}{2n^2 + 5n - 3} = \frac{n + 3}{2n^2 + 5n - 3}
\]

Now, factor the quadratic on the bottom using the factoring by grouping method since we have a coefficient that is not the value of 1.

\[
\frac{n + 3}{(2n - 1)(n + 3)} = \frac{n + 3}{(2n - 1)(n + 3)} = \frac{1}{2n - 1}
\]

However, if the denominator is not the same we must first make it the same for both fractions before we can add.

\[
\frac{2}{3x} + \frac{1}{6}
\]
Find the lease common denominator, which will be $6x$. In order to get that in both fractions, we must multiply the first fraction by 2 and the second fraction by x.

$$\frac{2}{3x} + \frac{1}{6} = \frac{2 \cdot 2}{2 \cdot 3x} + \frac{1 \cdot x}{6 \cdot x} = \frac{4}{6x} + \frac{x}{6x}.$$

Now we can add or subtract our fraction straight across.

$$\frac{4}{6x} + \frac{x}{6x} = \frac{4 + x}{6x}; \text{we cannot reduce any further}$$

The same is true for more complicated denominators. Multiply the denominator to both top and bottom of the other fraction and it will give you a common denominator that allows you to add the fraction.

$$\frac{5}{c + 2} + \frac{6}{c - 3} = \frac{5(c - 3)}{(c - 3)(c + 2)} + \frac{6(c + 2)}{(c - 3)(c + 2)} = \frac{5c - 15}{(c + 2)(c - 3)} + \frac{6c + 12}{(c + 2)(c - 3)} = \frac{11c - 3}{(c + 2)(c - 3)}$$

ADD OR SUBTRACT

If a common denominator exists, add straight across. If a common denominator does not exist, use multiplication to find one.

13. \(\frac{4}{6t-1} + \frac{3}{6t-1} \)

14. \(\frac{n}{n+3} + \frac{2}{n+3} \)

15. \(\frac{3y+2}{y+4} - \frac{y-6}{y+4} \)

16. \(\frac{7}{3a} + \frac{2}{5} \)
17. \(\frac{3}{8m^3} + \frac{1}{12m^2} \)

18. \(\frac{c}{c+5} + \frac{4}{c+3} \)

19. \(\frac{c^2}{ab} - \frac{a^2}{bc} \)

20. \(9 + \frac{x-3}{x+2} \)